QSORT -- Version 4.11

Text File Sorting Utility

Copyright 1985-1989 - Ben Baker

All rights reserved

Table of Contents

Introduction
About Shareware
Notation

The QSORT Command and Options

The

/<key_spec> Parameter

Records and Record Types

The
The
The
The
The
The
The
The
The

/F<len> Parameter
/N<term>[<term2>] Parameter
/T[<tag>] Parameter
/D[<fields>] [<delim>] Parameter
/R Parameter

/S[V] Parameter

/? Parameter

@<command_file> parameter
"2><error_file>" parameter

Lexicographic Sorting

Examples

Error Messages and Return Codes
Command Line Errors
Memory Errors
I/0 Errors
Internal Errors
ERRORLEVEL Return Codes

Implementation Notes
General Information
Performance and DOS Configuration
Performance and Sort Keys
Performance and Memory Size
Performance and File Size

LIMITED WARRANTY

N

NOWXOOJIJoOouldWw

[

[
[Ny

16

19
19
21
21
22
22

23
23
23
25
26
26

28

List of Tables

Table 1 - Special character notation
Table 2 - Key type sorting examples

Table 3 - ERRORLEVEL return codes

List of Figures

Figure 1 - Sort statistics report

Figure 2 - Parameter evaluation report

Figure 3 - Sample command file listing

14

22

10

11

ii

Introduction

QSORT was first designed to be a replacement for, and to overcome
the limitations of DOS SORT. The current version will sort files
whose size is limited only by available disk space. File name (s)
may be given explicitly or QSORT will sort from standard input to
standard output, and so, may be used in pipes or with
redirection. Multiple keys may be specified. Binary files with
fixed-length records may be sorted, provided only that keys are
ASCII character strings.

QSORT tries to be very protective of your data. If QSORT has an
error of any kind, it will terminate with the input file still
intact, and will return to DOS with a non-zero ERRORLEVEL. When
QSORT successfully completes sorting a file, it terminates with
ERRORLEVEL set to zero.

The command line syntax is a super-set of DOS SORT's syntax, so
QSORT may be used without other changes in Dbatch files using
SORT, but in most cases you will want to make use of QSORT's
greater capabilities.

About Shareware

QSORT is the copyrighted property of Ben Baker, and is made
available under the "shareware" concept. Shareware products are
distributed freely and publicly. You are invited to "test drive"
them without cost. But shareware 1is NOT FREE! If you use a
product, you are expected to pay a fee for its wuse. Because
overhead costs are lower, this fee is usually a fraction of the
normal commercial price the product might carry, but it is NOT
zero!

Version 4 of QSORT will continue to be distributed and supported
as shareware. It may be freely copied and distributed, provided
that 1) it is distributed under the name "QSORT," and 2) the doc-
umentation file always accompanies it.

If you find this program useful and it meets your needs, noncom-
mercial users are asked to pay a license fee of $20 for each
machine on which it is used.

The license fee for commercial use of QSORT, version 4, is $35
each for the first nine machines on which it is used. Liberal
quantity discounts, and site licensing are available.

Vendors wishing to distribute QSORT, version 4, as a part of com-
mercial products may contact the author at the address below for

terms.

QSORT Text Sorting Utility 2

Send checks or correspondence to:

Baker & Associates

One Mark Twain Plaza, Ste 325G
Edwardsville, IL 62024

Phone: (618) 656-8850

From time to time, as necessary, maintenance updates will Dbe
released to correct deficiencies, but no new features or capabil-

ities will be added to this shareware product. All future devel-
opment will go into the commercial version of QSORT. At this
writing, version 5 is available as a commercial product. It is

significantly faster than this version and has a number of new
features, not the least of which is the ability to sort dBASE
database files.

The complete commercial package (version 5 or later), including
printed documentation and technical support may be purchased from
System Enhancement Associates at the following address:

System Enhancement Associates, Inc.
925 Clifton Ave.

Clifton, NJ 07013

Phone: (201) 473-5153

Notation

In defining the command line and its various parameters, the
following notation is used:

[<optional>] items are enclosed in square brackets.

<variable> items appear in lower case, underscored, and are
surrounded by angle brackets (<>). They are replaced
by actual data such as a file name.

THIS | THAT Choices are separated by a vertical Dbar.
Select one or the other but not both.

[THIS | THAT] When the choices are enclosed in square
brackets, they are optional. You need not select
either.

REPEAT. . . The ellipsis (. . .) means the item to its left
may be repeated as many times as necessary.

UPPER CASE items and all special characters not defined
above represent themselves. They are entered exactly
as they appear.

EXAMPLES are shown in bold upper case characters.

QSORT Text Sorting Utility 3

The QSORT Command and Options

QSORT is invoked with the following command:

QSORT [<in file> [<out file>]] [/<key spec>]. . .

]
[/F<len> | /D[<fields>][<delim>] | /T[<tag>]]
[/N<term>[<term2>]] [/R] [/S[V]] [/?]
[R<command file>] ["2><error file>"]
Note that all parameters on the command line are optional. The

<in file> and <out file> parameters are ASCII file specifiers.
They may contain disk and path information in the standard DOS
format, but must not contain "wild-card"™ characters. If
<in file> is missing, QSORT sorts from standard input to standard
output. These are files defined and opened by DOS before QSORT
is loaded. (See your DOS manual concerning the use of redirec-
tion and pipes.)

The simplest of all invocations of the QSORT program is just:
QSORT

DOS assigns input to the key board, and output to the screen. As
you type lines of input, QSORT salts them away in its sort
buffer. When all lines have been entered, type a CTRL-Z (hold
the "Ctrl" key and press "Z") and press "Enter." This signals
DOS that you are finished and QSORT sorts its buffer and the out-
put is displayed on your screen.

If <in file> is given but <out file> is missing, QSORT creates a
temporary file in the directory containing <in file> and sorts to
the temporary file. On successful completion of the sort,
<in file> is deleted and the temporary is renamed to <in file>.
The effect is an apparent "sort-in-place."

If both file names are given, <in file> is wunchanged and the
sorted output 1is written to <out file>. ©Note that the following
two commands are exactly equivalent:

QSORT FILE.TXT FILE.SRT
QSORT <FILE.TXT >FILE.SRT

In the first, QSORT opens the files. 1In the second, redirection

is specified and DOS opens the files. The result is the same.
It is an error QSORT can't detect if vyou mix these. For in-
stance:

QSORT FILE.TXT >FILE.SRT

will result 1in a sort-in-place. QSORT will open FILE.TXT but
won't know DOS has opened FILE.SRT for it, and will ignore it.

QSORT Text Sorting Utility 4

The /<key spec> Parameter

Up to 30 /<key spec> parameters may be used to specify sort keys
and are ordered major to minor from left to right. The
/<key spec> argument has the form:

/[+|-1[<field>.] [<col>][:<length>] [<type>]

Note that all elements of this argument are "optional," but at
least one element must be present following the slant-bar (/).

The minus (-) sign reverses the sorting order for this key, while
the plus (+) sign (or no sign) specifies normal sort order.

There are three numbers associated with every sort key: the field
number, the starting column within the field, and the length of
the key in characters. Any, or all of them may be given in a
/<key spec> parameter. QSORT wuses punctuation to identify each
number. A number followed by a period (.) is a field number. A
number preceded by a colon (:) is a length number. A column num-
ber has no punctuation associated with it. It follows the field
number, 1f any, and precedes the length number, if any.

The [<field>.] element is used only for "delimited-field" or
"tagged" records, and locates this key within a particular field
of a delimited-field record or line of a tagged record. Under
certain circumstances limits are placed on the [<field>.] element
(see the /D parameter below). If [<field>.] is omitted, the
first field or line is assumed. For consistency, all records are
assumed to have "fields." 1In all cases except delimited-field or
tagged records, there is precisely one field, and it spans the
entire record.

If present, [<col>] defines the beginning column of the key. If
omitted, column 1 is assumed. In the case of delimited-field
records, column 1 is the first character of the identified field.
In the case of tagged records, column 1 is the first character of
the identified 1line. In all other cases, column 1 is the first
character of the record.

If present, [:<length>] defines the key 1length in columns (or
characters) . If [:<length>] is omitted, the rest of the record,

or field in delimited-field or tagged records, is assumed to be
part of the key.

The [<type>] element is an optional suffix letter which tells
QSORT how to compare these keys. At present, there are only two
key types recognized by QSORT, but others are planned for future
versions.

If no [<type>] is given, or if [<type>] is "A" these keys will be
ordered according to the ASCII character sequence. This 1is
QSORT's default behavior.

QSORT Text Sorting Utility 5

If [<type>] is "L" QSORT uses a "lexicographic" sequence for this
key. Lexicographic sequence is ordered first by spelling, then,
when keys have identical spelling, by capitalization. (See the
section on Lexicographic Sorting later in this manual.)

To avoid confusion, [<type>] must not Dbe the only <key spec>

element given. In other words, 1f you wish to use the entire
record as the sort key, but sort records in lexicographic order,
use /+L, not /L. The "+" in the first form serves only to

identify this as a <key spec> parameter.

If no key parameters are given, the entire record, or the entire
first field is a standard ASCII key.

When sorting variable-length records, any key which begins beyond
the end of its field in a particular record is treated as a null

(zero length) key for that record, and will sort low relative to
all records with non-null wvalues for that key. When sorting
fixed-length records, all defined keys must fall within the de-
fined record length. <key spec> parameters must appear in order

of importance, primary key first.

Records and Record Types

The QSORT program sorts logical units called records. In a
majority of cases, a record is simply a variable length line of
text in a standard ASCII text file, Dbut QSORT does provide
support for fixed length records, and several variations on the
variable length record theme.

Fixed length records are Jjust what the name implies -- each
record consists of a defined number of bytes. Record parsing
consists of merely counting.

A variable length record is one or more variable length lines of
ASCII text. A line is a possibly empty string of characters
ending with a newline seqguence.

The QSORT program supports three kinds of variable length record:

The default: Standard lines of text, as mentioned above,
with keys located at fixed positions within each line
(by default, the entire line).

Delimited records: These are lines which are divided into
variable length fields separated by a special character
called a delimiter. A sort key may be located within

any particular field.

Tagged records: These are logical records consisting of
many lines of text. QSORT finds the end of each record
by searching for either an empty line or a line

containing a particular tag character. Sort keys are

QSORT Text Sorting Utility 6

usually located on the first line of the record, but
may be defined to be on any particular line.

The /F<len> Parameter

The /F<len> parameter denotes the record length for a file of

fixed-length records. All records in the input file must be ex-
actly <len> bytes long. The records need not (but may) be termi-
nated with a CR/LF sequence. They may contain any data, even bi-

nary data, but the keys must Dbe ASCII strings. Strings may be
terminated with a null (binary zero) character, or may be padded
with trailing spaces to the full length of the key, but if these
conventions are mixed, it will affect sorting order.

Note that QSORT does not attempt to support Pascal style strings.
These are strings which begin with a character whose binary wvalue

is a character count. This is followed by <count> characters of
ASCII data, which in +turn is followed by random data out to the
maximum length of the string. These strings may be used as keys,

but the programmer must insure that either the last real charac-
ter is a null character, or the key is padded to its full length
with spaces. QSORT must be told that the key begins in the sec-
ond character position (the first character of real data).

The /N<term>[<term2>] Parameter

When sorting variable length records, the QSORT program finds the
end of each line Dby searching for the newline sequence. Most
files are well behaved in this respect. Their lines end with a
carriage-return character (CR), followed by a line-feed character
(LF). The /N<term>[term2>] is provided to handle the exceptions.
It allows vyou to redefine the newline sequence to be any one- or
two-character sequence, and thus match the most pathological
convention a file might observe!

For example, a file might contain lines ending with a naked LF
character. This is a standard convention for files imported from
a UNIX environment. Without redefining the newline sequence,
QSORT could not sort these files. (Another situation where this
is useful will be described under the /D parameter, below.)

<term> and the optional <term2> define the one- or two-character
sequence QSORT is to use to find the end of each line of text.

Some characters cannot be wused to represent themselves in a DOS

command line. For that reason, QSORT uses codes to represent
them. These codes are actually a pair of characters. The first
is always a back-slash (\). The second character identifies the
special character it represents. Table 1 1lists the special

characters recognized by QSORT.

QSORT Text Sorting Utility 7

To perform a simple sort e e
on a UNIX file, as \B Space character
mentioned above, you would \F Form feed character
use the command: \L Line feed character

\N Newline sequence

QSORT UNIXFILE /N\L \R Carriage return

\T Tab character
Note that the \N character \/ The slant bar character
listed in table 1 has no AR Back-slash character itself
meaning in this context. to———_—_——_—————— e -
It means the newline
sequence and cannot Dbe Table 1 - Special character notation

used to define itself.

The /T[<tag>] Parameter

The /T[<tag>] parameter, if present, indicates that the records
to be sorted may be more than a single line long.

If <tag> 1s also present, it defines a character to be used to

tag the "end-of-record." If <tag> 1is not present, the first
empty line terminates the record. For this purpose, "empty"
means "no characters." A line containing but a single space is
not empty! A line may be "tagged" by placing the <tag> character
anywhere on the last line of a logical record. The entire line,

including the tag character will appear as the last line of the
record.

The special characters defined 1in table 1 may be wused to

represent <tag>. Thus an invisible tab character might be used
to end a multi-line logical record. Notice that the slant bar

(/), when wused as a delimiter character in the /T or /D
parameters, must be prefixed by the back-slant to prevent it from
being interpreted as the beginning of a new parameter.

The /D[<fields>][<delim>] Parameter

The /D[<fields>][<delim>] parameter, if present, states that this

file contains delimited-field records. In other words, a record
is made up of distinct, variable length fields separated from one
another by a particular character, or delimiter. Records are

separated, or delimited by the newline sequence.

If a <delim> character 1is present, QSORT uses it as a field de-

limiter character. Otherwise a comma (,) is assumed to be the
delimiter. The same character codes listed in table 1 may be
used to represent these characters. Note that "\N" means the
newline seqguence, either CRLF or as redefined by the /N
parameter.

The <fields> element defines the number of variable length fields

contained in each record. In most cases, this element 1is

QSORT Text Sorting Utility 8

437248 bytes of buffer space available

61344 records sorted
126 bytes in longest record

885731 sort phase comparisons
99510 merge phase comparisons

985241 total comparisons
16.0 comparisons per input record

11 temporary merge files created
1 merge passes
2.0 average passes over data

4:29 elapsed time

Figure 1 - Sort statistics report

unnecessary. The QSORT program accommodates a variable number of
delimited fields. If a sort key is defined for a field which
does not exist in the current record, it is treated as NULL and
sorts low when compared with a record which contains the field
and its key.

There is a special case in which the <fields> element 1is
required, and there must be exactly <fields> fields in each and
every record. When <delim> is \N, the QSORT program has no way
to find the end of each logical record, except to count fields.
(Why would you want to do this? See the mailing label example on
page 18.)

NOTE : The /F, /T and /D parameters define different
record formats, and are therefore incompatible. Only
one of these parameters may be wused for any given
execution of the QSORT program.

The /R Parameter

The /R parameter is included for compatibility with DOS SORT and
is redundant. It reverses the sense of sort direction for all
sort keys.

The /S[V] Parameter

The /S parameter tells QSORT to make a statistics report to the

screen at the end of a run. The report is written to the
standard error device, by default, the console. Figure 1 is an

QSORT Text Sorting Utility 9

actual statistics report produced after QSORT had sorted a four
and one half megabyte file.

The first number is the size of the sort buffer the QSORT program
was able to obtain from DOS. It depends on the amount of memory
available in your machine at the time QSORT is executed. The
more there is, the better QSORT will perform.

The next two numbers are self-explanatory. Then come the number
of times two records were compared during the sort phase and the
merge phase respectively, followed by the total comparisons.

The next number is total comparisons divided by the number of

records in the input file. This number is typically 10 to 20.
If it 1is much larger than 20, it usually means that there is
something unusual about your input file. It may already be
sorted, or there may be large Dblocks of records which compare
equal. This can happen if vyou sort on, say column 50 and the
input file <contains a large number of records shorter than 50
bytes. 1In this case, a minor sort key at column 1 may

significantly speed sorting.

The next two items are self-explanatory. "Average passes over
data" reflects the number of times each record was read and writ-
ten. For short files not requiring a merge pass, this number
will be 1.0. When merging is needed, the last merge pass is the
one which writes the output file and it must read and write every
record exactly once. Thus when only one merge pass 1s made,
there will be exactly 2.0 "average passes over data." Extremely
large files may produce more temporary files than QSORT can read
at one time, and thus require more than one merge pass. In that
event, this number will be higher.

The optional subparameter, [V] (for verbose), causes the QSORT
program to make running progress reports to the screen. Each
pass during both the sort phase and the merge phase (if any) is-
sues a 1l-line report telling the merge file(s) and the number of
records being processed during that particular pass. This is not
terribly useful for short files, but for the big ones, it can
give the wuser a warm comfortable feeling that something is actu-
ally being done.

NOTE: The sort reported in Figure 1 was performed on a
Zenith 248, an eight megahertz AT clone with two hard

drives (C and D). The input file was on C; the
temporary merge files were placed on D; and the output
file was written to C:. The sort of a 4.5 megabyte

file took under four and a half minutes.

The /? Parameter

The /? parameter requests help or parameter evaluation. When

QSORT is executed with the /? parameter alone, it lists a short

QSORT Text Sorting Utility 10

With the present arguments, QSORT would sort from STDIN to
STDOUT
Records are multiple lines ending with an empty line

Key fields in descending order of importance are:
Field Pos Len Type

1 5 12 Lexical Descending
1 3 2 ASCII
1 22 65535 ASCII Descending

Figure 2 - Parameter evaluation report
description of the QSORT parameters. If /? is entered as one of
several parameters, QSORT will produce a short report on the
screen describing the sort it would perform based on those param-
eters without actually doing a sort.
For example:
QSORT /? /5:12L /-3:2 /22 /T /R <INFILE.TXT >OUTFILE.TXT

produces a screen report similar to figure 2.

This display lists everything QSORT knows about the proposed

sort. It shows the file name(s), if known, or in this case, the
fact that QSORT is Dbeing used as a "filter" and file names are
unknown. It lists file characteristics, here showing that the

input file has records "tagged" with an empty line. And it lists
characteristics of all defined key fields. The third key in this
report has an unspecified length. The value "65535" merely means
that this key extends to the end of the first 1line of each
record.

The @<command file> parameter

Normally you give QSORT its parameters on the command line, but
it is also possible to place a complicated set of parameters in a
"command file,"™ and tell QSORT to get its parameters from that
file. For example, the command:

DIR | QSORT /30:2 /24:5 /39 /34:5 /1

would produce a directory listing sorted by file date and time,
oldest file first. That's fine if you can remember which columns
DOS uses in its directory listings. But I can't, can you?

A file named DATESORT.DIR is supplied on vyour distribution
diskette. Figure 3 is a listing of its contents.

QSORT Text Sorting Utility 11

o
/30:2 ;; year - 2 digits
/24:5 ;; month/day - 2 digits/2 digits
/39:1 ;; 'a' or 'p' for AM or PM flag
/34:5 ;; hour:min - 2 digits:2 digits
/1 ;; file name, if date and time are equal
o

Figure 3 - Sample command file listing

Using this file, the command:
DIR | QSORT @DATESORT.DIR

will produce the same sorted directory listing, and the file name

is a 1lot easier to remember than the five sort keys! It is also
possible to mix command line and command file parameters. The
command:

DIR | QSORT @DATESORT.DIR /R
produces a sorted list, newest rather than oldest file first.

In DATESORT.DIR, each key 1s placed on a line by itself. Obvi-
ously, this works, but it is not necessary. Parameters in a com-
mand file need only be separated by "white space," spaces, tabs
or new lines.

A command file is invoked by placing an "at sign" (@) before its
name, and 1t may contain any valid QSORT parameters except the
"redirection" parameter, below. It may even contain another com-

mand file parameter, but QSORT cannot detect loops 1in command
files invoked this way, so be careful.

There is a limit to the depth command files may be nested. Since
a command file is not closed until it has been completely read,
you cannot have more command files than you have available file
handles. And it is possible QSORT would run out of stack space
before it runs out of handles, and crash pitifully! QSORT com-
mand file nesting has been tested to a depth of two, and it's
hard to envision ever needing more than that (famous last
words!) .

Notice, also that there is a bunch of commentary in DATESORT.DIR
which would hopelessly confuse QSORT if it were entered on the
command line. If QSORT finds two semi-colons (;;) in a row in a
command file, it stops looking at that line, and goes on to the
next line. This is only necessary if you wish to place commen-
tary into a command file. The reason that two semi-colons are
needed to introduce a comment is that a command file might con-
tain a perfectly legitimate parameter, /D; for example, in which
a semi-colon is part of the parameter.

QSORT Text Sorting Utility 12

There is only one situation in which two semi-colons might be
part of a parameter, and it seems so remote that it's hardly

worth mentioning. If vyou wish to sort a file so pathological
that it wuses two semi-colons as a newline sequence, you can put
/N;; on the command 1line, but not in a command file. You could

use /N;\; instead, and accomplish the same thing.

What if you wish to sort a file named @SILLY.FIL? The best thing
to do 1s rename it and get rid of the at sign. But if QSORT en-
counters a parameter which begins with two at signs (@@), it dis-
cards the first at sign and takes the rest of the parameter as a
literal file name. Thus:

QSORT @@SILLY.FIL Q@SILLY.OUT

would sort vyour silly file, placing the sorted output in a file
named @SILLY.OUT.

The "2><error file>" parameter

The QSORT program writes its messages and help and statistics
screens to the DOS standard error device. DOS allows the user to
redirect standard input and standard output, as discussed ear-
lier, but makes no provision for redirecting standard error. As
far as DOS is concerned, error messages belong on the screen and
nowhere else!

The "2><error file>" parameter provides the capability of
redirecting QSORT's messages and screens to the file named in
<error file>. UNIX users should recognize the syntax immedi-
ately. It is borrowed from the Bourne-Shell. Some replacements
for DOS' COMMAND.COM, particularly those which emulate the UNIX
environment, also support this syntax. The parameter should be
enclosed in quote marks as shown to prevent later versions of DOS
from trying to perform the redirection wrong!

Two variations on this parameter are also recognized by the QSORT

program. "2>><error file>" tells QSORT to open <error file> in
append mode and add the messages for this run to the end of the
contents already in <error file>. "2>&-" turns off all message

output from QSORT.
To summarize:

QSORT JUNK /S "2>MESSAGES.TXT"
sorts the file JUNK in place, writing the statistics screen to
the file MESSAGES.TXT. If that file already exists, it is re-
placed by the output of this QSORT run.

QSORT JUNK /S "2>>MESSAGES.TXT"

QSORT Text Sorting Utility 13

sorts the file JUNK in place, appending the statistics screen to
the end of the file MESSAGES.TXT.

QSORT JUNK /S "2>&-"

sorts the file JUNK in place. The /S parameter is meaningless,
since the "2>&-" parameter turns off all message output from
QSORT!

Command line arguments may appear in any order on the command
line except that <in file> must appear before <out file>, and
/<key spec> arguments must appear in descending order of
importance.

QSORT Text Sorting Utility

14

INPUT ASCII CASELESS LEXICAL
DelLaPort Baker Baker Baker
Smith Brown brown Brown
brown DeAngelo bRown bRown
deLaPorte DelLaPort Brown brown
Deangelo Deangelo Deangelo DeAngelo
deAngelo Deangelo deangelo Deangelo
Brown DelaPort Deangelo Deangelo
smith DelaPorte deAngelo deAngelo
delaPorte Harry DeAngelo deangelo
DelaPort Smith delaPort DelLaPort
DeAngelo bRown DelaPort DelaPort
DelaPorte brown delaPort delaPort
deangelo deAngelo DelLaPort delaPort
Harry deLaPorte DelaPorte DelaPorte
delaPort deLaPorte deLaPorte deLaPorte
Baker deangelo delaPorte deLaPorte
deLaPorte delaPort deLaPorte delaPorte
Deangelo delaPort Harry Harry
bRown delaPorte smith Smith
delaPort smith Smith smith

Table 2 - Key type sorting examples

Lexicographic Sorting

The lexicographic sorting capability was born out of my own need
to sort word lists with mixed capitalization. ASCII sequence
produced some Dbizarre results when words beginning with 'Z2'
sorted before those beginning with 'a.' Case-insensitive sorting
wasn't much better Dbecause upper and lower case got mixed
randomly.

Table 2 illustrates the problem. The first column is a list of
names in arbitrary order. The second is an ASCII sort of that
list. Third, we have one possible case-insensitive, or caseless
sort of the list. The fourth column is what I really wanted. It
is sorted the way these words would be sorted in a dictionary (or
lexicon) . The third and fourth columns both collect words of
identical spelling together, but in the third column, upper and
lower case spelling are 1in arbitrary order, while the fourth
column places upper case spelling ahead of lower case spelling.

For example, the two occurrences of Smith are widely separated in
column 2 because one is capitalized and the other is not. Column
3 brings the two together, but in the wrong order. They might

QSORT Text Sorting Utility 15

have been in the right order, but the order is strictly arbi-
trary. In column 4, Smith comes before smith, and lexicographic
sorting will always put them in this order. ©Notice, also that
the two occurrences of delaPort are not together in column 3, but
are brought together in column 4.

Lexicographic sorting is achieved Dby making case-insensitive
comparisons of entire keys. If the keys compare equal, an ASCII
comparison is made to arbitrate the tie. In other words, when
"lexicographic" keys in two records have different spelling, the
case-insensitive comparison determines the order of the records.
When "lexicographic" keys are spelled the same, the case-
sensitive comparison determines the order of the records.

Lexicographic keys are defined, as indicated above, by placing
the letter 'L' in the_<type> element at the end of_<key spec>
definitions.

Lexicographic sorting can be very useful when needed, Dbut be
aware that unnecessarily specifying lexicographic ordering may
degrade performance of QSORT.

QSORT Text Sorting Utility 16
Examples

Produce a sorted directory listing and display it on the console

a screen's worth at a time:

DIR | QSORT | MORE

This demonstrates the use of QSORT as a "filter" in a "pipe."

Produce a directory listing sorted by creation date and time, and
display it on the console a screen's worth at a time:

DIR | QSORT /30:2 /24:5 /39 /34:5 /1 | MORE
The output of the DIR command is piped to QSORT. The keys de-
fined are, from left to right (major to minor), year (2 digits),
month and day, AM/PM flag, time, and finally file name. The out-
put of QSORT is then piped to MORE for display.
Alternatively, the command:

DIR | QSORT @DATESORT.DIR | MORE

using command file DATESORT.DIR supplied on your QSORT distribu-
tion diskette, does the same thing.

Next, replace the unsorted FILE.TXT with the same data sorted in
descending order. Use columns 10 to 16 as the sort key:

QSORT FILE.TXT /-10:7
or

QSORT FILE.TXT /10:7 /R
or

QSORT FILE.TXT /R /+10

GLOSS.TXT is an unsorted glossary of terms. The term being de-
fined by each entry appears first, followed by several lines of
definition. The entries are separated by empty lines. Produce
GLOSS.SRT, a sorted version of the glossary:

with redirection

QSORT /T <GLOSS.TXT >GLOSS.SRT

QSORT Text Sorting Utility 17

or without redirection

QSORT /T GLOSS.TXT GLOSS.SRT

A lawyer Kkeeps a running log of his Dbillable activities in

TIME.LOG. The first 1line of each entry is the account number,
and the second line is date and time in the form "mm/dd/yy
hh:mm." He always places a tilde (") in the last line of each
entry. He wishes to sort the log by account number, and by as-

cending date and time within each account:

QSORT /1. /2.7:2 /2.1:5 /2.10:5 /T~ TIME.LOG

The directory of users for a bulletin board system is kept in a
binary file of fixed-length records 180 bytes long. The user
name 1s a 26-character field beginning in the first position and
the city/state field is a l6-character field beginning in the
fortieth position. Sort the file by city/state and name.

QSORT /F180 /40:16 /1:26 USER.BBS

DB.TXT is a delimited field output file from dBASE III. Each
record contains 7 fields, delimited by commas. Sort the file to
the screen using field 3 as a sort key.

QSORT /D /3. <DB.TXT

Here, "standard input" has been redirected to the file. Since no
redirection is given for "standard output," DOS assigns it to
the console by default. This is not a "sort-in-place!"

You have received a member list from the Society of End-users of

XENIX (SEX.LST). Sort the list by special interest (10 columns
beginning at 70) and name (30 columns beginning at 1). Note that
the file contains no carriage return characters. Since SEX.LST

is a very large file, we wish to obtain running status reports
and a final statistics report.

QSORT SEX.LST /70:10 /1:30 /N\L /SV

The /N parameter is used to redefine the newline sequence as a
naked line feed character.

QSORT Text Sorting Utility 18

The file LABEL.TXT contains mailing label images. Each label is
6 lines (1 inch) high. Line six is always empty and line three
is frequently empty. An extended Zip code always begins in col-
umn 20 of line 5, and extends to the end of the line. 1In order
to take advantage of Dbulk mailing rates, the labels must be
sorted into carrier route (CARRT) order.

QSORT LABEL.TXT /5.20 /D6\N

We must wuse a "delimited field" sort rather than a "tagged line"
sort because line six 1s empty, not tagged with a special
character. When line three is also empty a label would be broken
into two pieces and separated by the sorting process. Since each
label always contains six lines, we can treat it as six fields
delimited by the newline sequence, but we must inform QSORT of
the total number of fields.

QSORT Text Sorting Utility 19

Error Messages and Return Codes

The QSORT program can encounter a number of different errors dur-
ing execution. Each will generate a brief error message on your
console. This section will attempt to list the messages you may
see, and give you a little more detailed information about what
might have caused the problem.

Command Line Errors

The most common causes of error messages are errors in the com-
mand line parameters. Particularly when using a complicated set
of keys, I recommend the use of "/?" as the last parameter. If
QSORT discovers an error, it will be reported. The QSORT program
will also show you exactly what it would have done, had the "/2"
parameter not been there, but will not perform a sort.

You may then hit the "F3" key to recall the command, edit any bad
parameters using the left and right cursor keys and the "INS" and
"DEL" keys. When the command parses without error, and the re-
port looks 1like the kind of sort you wish to make, hit the "F3"
key once more, then back space over the "/?" parameter, then hit
"Enter" and QSORT will do the rest.

One or more of the following errors might be encountered in the
command line:

Three file names specified
At most, only two file names may be given, an input file and an
output file. The most likely cause of this message is forgetting
to use the "/" character at the beginning of a key spec or other

parameter.

Invalid command line parameter "<parameter>"

This message 1is issued if QSORT receives a parameter it does not
understand. It is wusually a typographic error. You meant "/D"
and hit "/E" by mistake. The message displays the actual
<parameter> it did not understand.

/D, /F and /T parameters are incompatible

Each of the above parameters tells QSORT to use a different scan-
ning routine to parse records. Since only one such routine can
be used, it is an error to use more than one of these parameters.
In those wunusual situations where more than one might apply, use
the most efficient one. (See the section on "Performance and
Sort Keys" for more information.)

Multiple /<parameter> parameters encountered

QSORT Text Sorting Utility 20

This message again applies to the /D, /F and /T parameters. In

this case, the same parameter appears twice in the command line.
/F<length> parameter with invalid <length>

No substitution is made for "<length>" in this message. This is

the actual message displayed. It means that either there was no

length specified, or the specified length was zero.

Keyfield "<key spec>" begins beyond end of record

Keyfield "<key spec>" extends beyond end of record

These two messages refer to fixed-length records. A key specifi-
cation has told QSORT that data exists beyond the bounds of the
record. For instance, suppose that /F20 has been specified.
Then /23 would invoke the first message because the record is
only 20 characters long. Similarly /18:5 begins before the end
of the record but extends beyond it, and would invoke the second
message. Note that /18 is OK. QSORT will assume a length of
three in this case.

Invalid delimited field specification - "<key spec>"

This one is similar to the previous messages. The "field number"
portion of a key specification was greater than the defined num-
ber of fields. For example "/D5\N /6.1:3" would provoke QSORT
into issuing this message. It's hard to find field 6 in a 5-
field record. Another possibility is that you may have forgotten
to use a /D or /T parameter, altogether. Since multiple fields
are only wvalid for these record types, one must be present
whenever you use a field number greater than 1. This message
will never appear for tagged records, or for delimited field
records where the field delimiter and the record delimiter are

different. In those cases, QSORT permits a variable number of
fields, and any field number is legitimate in a key
specification.

Multiple STDERR redirections

At most, the standard error output may be redirected once. A
second attempt to do so will fail with this message.

Invalid STDERR redirection
Two conditions cause this message; use of 2> or 2>> as the last
parameter, with no file specified, or use of 2>&<x> where <x> is
any text other than an unadorned hyphen.

ABORT -- Error(s) in command line parameter (s)

If any of the above messages are issued, QSORT will continue to
scan the command line and evaluate the parameters, but will even-

QSORT Text Sorting Utility 21

tually issue this message too. If there are command line errors,
QSORT will not guess about your data. It will stop!

Memory Errors
ABORT -- Buffer allocation error

An error of unknown origin occurred when QSORT was trying to al-

locate memory for its Dbuffers. The most likely cause here is a
"memory poor" condition caused by a too small partition under a
multitasker such as DoubleDOS, or perhaps too many "terminate-
and-stay-resident" programs. As an absolute minimum, QSORT must

be able to obtain eight kilobytes of contiguous memory for its
sort buffer.

ABORT -- Insufficient memory

This one can occur at any time during the sort. QSORT must have
a sort buffer large enough to hold the two largest records in the
file. Typically, the sort buffer is about fifty kilobytes, which
means that 1if records are shorter than about twenty five kilo-
bytes, QSORT can usually handle them. This is normally a problem
only when using the /T parameter.

I/0 Errors

ABORT -- Unable to open "<file spec>" for input

QSORT was attempting to open <file spec> for input. If
<file spec> is your input file, you probably misspelled the name.
If <file spec> has the form "number.SRT" QSORT could not find a
merge file it thought it had created. If this happens you may
have discovered a bug. Please send me full particulars ASAP!

ABORT -- Unable to open "<file spec>" for output

QSORT was attempting to open <file spec> for output, and the open
operation failed. The most likely cause is that you ran out of
disk space, and DOS was unable to expand a subdirectory. A root
directory cannot be expanded, and you may have run out of direc-
tory space. DOS will also complain if you attempt to open a file
with the same full name as an existing subdirectory.

ABORT -- Error reading input or merge file

The section of the program which issues this message does not
know the file name, so cannot help you much there. This message
may mean that your disk has a sector going bad. (Well, it can't
all be good news!)

ABORT -- Error writing to merge or output file

QSORT Text Sorting Utility 22

0 Successful completion

1 Command line error and/or "/?" parameter specified
2 Open-for-read error

3 Open-for-write error

4 I/0 error reading file

5 I/0 error writing file

6 Memory error

5 Internal error

Table 3 - ERRORLEVEL return codes

This one could also mean a bad sector, but a far more likely
cause 1s that you just ran out of disk space.

Internal Errors

ABORT -- Internal QSORT error
In theory, this is an error which "can't happen." If you EVER
get this message, please notify me with as many details as you
can supply. Actually I have NEVER seen this message issued by a

released version of QSORT.

ERRORLEVEL Return Codes

When QSORT successfully completes a sort, it terminates with DOS
ERRORLEVEL set to zero. (See your DOS manual for more information
on ERRORLEVEL.) If it terminates for ANY other reason, it sets
ERRORLEVEL to a non-zero value, which can be tested in a batch
file. Table 3 1lists the ERRORLEVEL codes QSORT uses, and their
meanings.

QSORT Text Sorting Utility 23

Implementation Notes

General Information

QSORT is intended as an enhanced replacement for DOS SORT. It is
nearly fully wupward compatible, Dbut provides much more flexi-
bility. Multiple sort keys may be specified, a pseudo in-place
sort may be performed and files and/or records of any size may be
sorted provided only that there is sufficient disk space for work
files and the output file. QSORT uses the "quick sort" algo-
rithm, which cannot guarantee the order of records whose keys are
all equal. This is the one "incompatibility"™ with DOS SORT,
which retains the original order of records when its only key
compares equal. This is important to SORT because it must be in-
voked multiple times to effect a multiple key sort. With QSORT,
you only sort once and there are usually enough keys available to
insure you get the order you want the first time.

QSORT uses as much memory as it can get as a sort buffer and will
fill the Dbuffer as full as possible, and then sort its contents.
If the end of the input file has been reached and no temporary
work files have been generated, the sorted contents of the buffer
are written to the output file, completing the sort operation.

If the input file is too large to fit into the sort buffer, as
much of the input file as possible is read into the Dbuffer,
sorted, then written to a temporary work file. This process is
repeated as many times as necessary to process the entire input
file, each time creating a new work file for the sorted output.

Upon completion of the "sort phase," QSORT begins a "merge
phase." Each work file is a sorted sub-set of the input file.
Thus, work files may be read sequentially and combined to produce
a sorted output. QSORT will open as many work files as DOS per-
mits (more on this later). If all the remaining work files can
be opened, the sorted result is written to the output file.
Otherwise, a new work file is created and another merge pass will
be required. On each merge pass, the number of work files is re-
duced and eventually all remaining work files will be opened and
the sorted output file will be written completing the sort oper-
ation.

Performance and DOS Configuration

When QSORT must create temporary merge files, it first creates a
temporary subdirectory to hold them. The subdirectory is named
SRTnnnnn, where nnnnn is a random number generated from the DOS
clock. When QSORT completes, even if it aborts for any reason,
it deletes any temporary files and the temporary subdirectory it
has created.

QSORT Text Sorting Utility 24

With nothing else to guide it, QSORT places 1its temporary

subdirectory in the default directory. Any of three "environment
variables" can override this. (See your DOS manual for
information on environment variables and the SET command.) The

DOS command:

SET QSTMP=<path> or
SET TMP=<path> or

SET TEMP=<path>

will define a path for QSORT to use for its temporaries. QSORT
first looks for the environment variable QSTMP. If it does not
exist, QSORT next looks for TMP or TEMP in that order. TMP and
TEMP are de facto standards used by many programs, and are usu-
ally defined in your AUTOEXEC.BAT batch file. You might have TMP
specifying a 64K RAM disk to speed up your compiler. In this
case, an attempt to sort a 600K file is doomed to failure.
Rather than redefine TMP, you may define QSTMP to force QSORT to
use some directory on your hard disk. 1In fact:

SET QSTMP=\

tells QSORT to always use the root directory of the default
drive!

QSORT, to work properly, needs enough space on the output disk to
hold the output file. Even if the input file is to be deleted
and resides in the same directory, that is not done until after
the output file has been successfully written. If one merge pass
is required, the disk space QSORT uses for temporary merge files
will be somewhat larger than the size of the input file because
DOS allocates file space in clusters of 2 or 4 kilobytes. If
more than one merge pass will be required, allow about twice the
size of the input file as temporary merge file space.

One of the advantages of controlling where QSORT places its tem-
porary files 1is to 1insure adequate space for them. A second is
speed. If the temporary files can be placed on a separate disk
from the input and output files, disk seeking 1is reduced and
performance improved.

Each time QSORT must create a new temporary merge file, the data
put into it will Dbe processed again. Obviously, the more files
QSORT can open during the merge phase, the fewer times it will
have to handle each record and the faster it can sort large

files. If DOS is properly pre-conditioned, QSORT can have up to
15 temporary merge files open at once, and very large files can
be sorted with just one sort pass and one merge pass. Unfortu-

nately, that capability is not automatic.

DOS has a fixed number of file "handles" that it associates with

open files. The default number is eight, but DOS opens five of

QSORT Text Sorting Utility 25

them for standard input, standard output, standard error, stan-
dard printer and standard auxiliary device. That leaves three
for merging. Assuming a 400K sort buffer, a 2 megabyte input
file would produce five temporary merge files and that would take
three merge passes; merge two into one, leaving four; merge two
into one leaving three; and finally merge three into the output
file. 1In the process, QSORT must read and write about 80% of the
file twice during the merge phase.

Worse yet, since you need at least three handles for merging, if
you have resident programs that have open files, you can't merge
at all!

DOS can be told to set aside more space for file handles. Each
handle is only 39 Dbytes and it's memory very well spent. One
process can have a maximum of 20 handles open at one time, but
since resident ©processes may be using handles, I suggest 25. To
do this, the root directory of +the disk or disks you boot from
must contain a file named CONFIG.SYS. If vyour Dboot disk(s)
already contains a CONFIG.SYS, edit it, or if not, create it to
contain the following line:

FILES=25

While we're at it, 1let's add one more thing to CONFIG.SYS which
will improve the performance of QSORT and many other programs as
well. DOS provides, by default, two disk buffers. These are the
buffers it wuses to do its disk reads and writes. During the
merge phase QSORT may have many files open at once, reading from
them in more or less random order. DOS may have to read the same
physical sector several times to get all its data. But DOS can
remember what's in each buffer and where it came from, and will
not re-read a sector it already has in a buffer. DOS needs 528
bytes for each buffer. I recommend 20 buffers to make QSORT per-
form well under the most adverse conditions. This will require
an additional 9504 bytes or slightly more than 9K, again memory
well spent, so we add to CONFIG.SYS the following line:

BUFFERS=20

See your DOS manual for more information on CONFIG.SYS.

Performance and Sort Keys

The sort keys defined on the command line have a lot to do with
QSORT's performance. There isn't much you can do by way of a
strategy, when vyou need a particular file sorted in a particular
way, but you should at least be aware.

If no sort key parameters and no record type parameters are
given, the entire simple ASCII record is used as a key. The
compare routine has no decisions it must make -- it simply

QSORT Text Sorting Utility 26

compares the two strings handed it. This is the "simple sort,"”
and is the fastest possible case.

A sort key that does not begin at the beginning of a variable
length record, may not be contained in a particular record at
all, while a fixed length record is known to contain all keys.
Other things equal, files of fixed length records will sort some-
what faster because the compare routine does not have to test for
"key containment."”

Lexicographic keys are first compared with a "case insensitive"
technique. Each character is tested to see if it is alphabetic.
If it is, it is converted to lower case. Then the converted
character from each record is compared. This is obviously slower
than directly comparing two characters. In the event
lexicographic keys compare equal, they are compared a second time
using a direct compare technique! Files with lexicographic keys
sort slower than similar files without them.

In the <case of files with delimited field records, the compare
routine must find the correct field for each key, determine if
the keys are contained within the fields, and finally compare
them. The added step of searching for fields slows record com-
parison.

In general, the more complex the data, the more complex the sort-
ing task and the longer it will take. QSORT attempts to optimize
its performance by making as many decisions as it can about your
data up front, then making only the necessary decisions on a
record-by-record basis.

Performance and Memory Size

If you have as little as 50 kilobytes of usable memory, the QSORT
program will perform correctly, but memory space this limited
will only allow a sort buffer of about eight kilobytes. Sorting
files any larger than this will cause QSORT to create many small
temporary merge files, and performance will suffer.

QSORT is capable of wusing as much memory as DOS has to give it.
So long as the file being sorted is smaller than QSORT's sort
buffer, no merging will be required and optimum performance is
achieved. The more memory you can give QSORT, the better it will

perform!

There are, of course, limits.

Performance and File Size

If you have 640 kilobytes of installed memory, and if you are not
running a multi-tasking system such as Windows, Desqgview or

DoubleDOS, and 1f you do not have a ton of terminate-and-stay-

QSORT Text Sorting Utility 27

resident programs installed in your system, the QSORT program
should have Dbetween 400 and 500 kilobytes of memory to use as a
sort buffer. Files smaller than this will not require merging
and will sort quite fast, the sorting time being nearly
proportional to file size times the logarithm of file size.

A file larger than the available sort buffer size will require
more than one sort pass, and hence, at least one merge pass.
Merging is approximately a linear process, so sort time will
increase proportional to file size.

For a file larger than the number of available handles times the
size of the sort Dbuffer (typically a very large file), a second
merge pass will be needed, but in this size range, only seven to
ten percent of the data will be processed in the first merge
pass, so the sort time vs size curve will steepen slightly, but
will not experience a large step. Doubling the file size should
increase the sort time about three times.

Sorting time will be approximately proportional to file size
times the "average passes over data" number from the statistics
report. Since this number remains a constant "2.0" over a wide
range of file sizes, sorting time will be a linear function of
file size in that range.

QSORT Text Sorting Utility 28
LIMITED WARRANTY

IMPORTANT NOTICE: Any use of this software for any period of time
for any purpose whatsoever constitutes your unqualified
acceptance of this LICENSE and subjects you to all of the terms
and conditions set forth below:

Baker & Associates ("B&A") warrants to any Licensee that acquires
the program from B&A or an authorized B&A representative ONLY
that:

1) All diskettes B&A provides constitute an accurate
duplication of the software and B&A will replace any
diskette found to be defective within 30 days from date
of acquisition. B&A will not honor this warranty if
the diskette has been subjected to physical abuse, or
used in defective or non-compatible equipment.

2) Software distributed by B&A will perform substantially
as described in the documentation B&A regularly
supplies with that software, if operated as prescribed
in such documentation including the hardware and
software environment specified.

3) If a significant defect 1in any program is found,
Licensee's only remedy shall Dbe to receive refund of
the actual fee Licensee paid for such defective
program. In no event will such a refund exceed the fee
B&A charges for such program.

4) B&A makes no warranty or representation that the
software will Dbe error free nor that its use by
Licensee will be uninterrupted.

Except as provided above, B&A disclaims all other warranties,
either express or implied, including but not limited to any
implied warranty of merchantability or fitness for any particular
purpose.

Licensee agrees to take full responsibility for the selection of
and any use whatsoever made of the software.

IN NO EVENT WILL B&A BE LIABLE FOR ANY DAMAGES WHATSOEVER
(INCLUDING WITHOUT LIMITATION DAMAGES FOR ©LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION OR
THE LIKE) ARISING OUT OF THE USE OF, INTERRUPTION IN THE USE OF,
OR INABILITY TO USE THIS SOFTWARE, EVEN IF B&A HAS BEEN ADVISED
OF ANY POSSIBILITY OR LIKELTHOOD OF SUCH DAMAGES.

